当前位置: 首 页 > 教学项目 > 本科 > 课程简介 > 正文

财经数理方法(54学时)

发布时间:2017-06-21来源: 浏览次数:

《财经数理方法》课程简介

本课程主要内容分为两部分。第一部分是介绍常微分方程的基本理论和解法;第二部分是在《概率论》课程的学习基础上,对《概率论》中的一些经典概念进行现代数学意义上的严格定义,并进一步对随机过程的几类经典模型和过程进行深入介绍和分析,最后介绍随机分析在金融中的应用。

本课程的主要内容包括以下几个方面:常微分方程的基本概念。包括常微分方程和解的定义及几何解释; 初等积分法解常微分方程。包括分离变量法,初等变换法,积分因子法等;对《概率论》的一些基本概念的回顾和重新严格定义,包括概率空间与随机变量、随机变量的数字特征及分布,条件数学期望,矩母函数和特征函数等;随机过程的定义及基本性质。包括随机过程的基本概念、数字特征、几种分类、两个基本模型的介绍:正态随机过程和泊松过程;泊松过程及其推广。包括泊松过程与指数分布的关系,到达时间间隔与等待时间的分布,复合泊松过程、剩余寿命与年龄等;离散和连续马尔可夫链的基本概念、转移矩阵、查普曼-柯尔莫戈洛夫方程,生灭过程等;布朗运动,包括布朗运动轨道的性质,布朗运动的推广,布朗运动的联合分布,首中时及最大值的分布等;鞅,条件数学期望的严格定义,并引出鞅的定义及基本性质;随机积分及伊藤公式,主要包括关于布朗运动的随机积分的定义及性质,伊藤公式的形式及应用伊藤公式求解随机微分方程,利用伊藤公式推导布莱克-舒尔斯公式。

使用教材:《随机过程及其在金融领域中的应用》 王军、王娟,清华大学出版社,北京交通大学出版社。

Mathematical Methods in Finance and Economics

This course contends two parts. The first part introduces some concepts of ordinary differential equations and methods of solving them. Based on the pioneering course of Probability, the second part of this course redefines some basic concepts in Probability, thus deeply introduces and analyzes some classical models and processes, finally introduces an application of stochastic analysis in finance.

The content of this course mainly includes the following:

First we first introduce some basic concepts of ordinary differential equations, including the definitions and geometrical explanations of ordinary differential equations and its solutions.

Then some elementary methods of solving ordinary differential equations, including separate variable method, elementary transform method, integrating factor method, etc.

After having introduced the basics of ODE, we start with recalling and redefining some concepts in Probability. We introduce the definition and basic properties of stochastic processes, including the basic concepts, mathematical characteristics, the classification, the introduction of two basic models: normal process and Poisson process.

We give the definition of Poisson process and extensions, including the relationship between Poisson process and exponential distribution, the distributions of inter-arrival time and waiting time, compound Poisson process, the residual life and age, etc.

As an important part of stochastic process, we introduce the Markov chains, including basic concepts of discrete and continuous Markov chains, transport matrices, Chapman-Kolmogorov equations, birth and death processes, etc.

The central concept of this course, Brownian motion, will be discussed, including properties of Brownian motion paths, extensions of Brownian motion, joint distributions of Brownian motion, distributions of first hitting time and maximum value, etc.

The concept of martingales, including the rigorous definition of conditional expectations and martingales, the basic properties of martingales, will be introduced briefly.

Last but not the least, the most important part, we focus on the stochastic integrals and Ito’s formula, including the definitions and properties of stochastic integrals with respect to Brownian motion, the form of Ito’s formula and applying Ito’s formula to solve stochastic differential equations. We apply Ito’s formula to derive Black-Scholes formula.

《财经数理方法》课程教学进度计划

课程名:财经数理方法

课时分配

大约第几周完成

(教师可调整)

36学时

54学时

72学时

第一章:常微分方程的基本概念

2

1

第二章:初等积分法解常微分方程

10

4

第三章:金融中的数学模型

2

5

第四章:概率空间

2

6

第五章:随机过程

2

6.5

第六章:泊松过程

6

8

第七章:马尔科夫链

6

10

第八章:布朗运动

6

12

第九章:鞅及其应用

6

14

第十章:随机微分方程及其在金融中的应用

8

17

第十一章:答疑

4

18

第十二章:

第十三章:

合计

54